Accelerating Algorithm Implementation in FPGA/ASIC Using Python

Tom Dillon, Jeremy Paatela, Guenter Dannoritzer, Scott Hussong

[tdillon, jpaatela, guenter, shussong] @DillonEng.com
Dillon Engineering, Inc.

Introduction

There are many white spots on the map when looking at the road
from algorithm to ASIC/FPGA implementation. Venerable
tools like MATLAB cover the algorithm development side. On
the logic side, many vendors offer capable simulators and
synthesis tools. However, after an algorithm has been
developed, there are still some steps needed to arrive at the final
implementation in a Hardware Description Language (HDL)
that can be verified for proper functionality. New tools and
languages constantly emerge to nibble at pieces or promise to
deliver everything, but there is still no clear one-size-fits-all
vendor solution to pave the way from algorithm to logic.

At Dillon Engineering Inc. we have been using the Python
scripting language for many years now to fill some of the white
spots in the development cycle. We are essentially hardware
engineers always looking for ways to speed our development
cycles. Python has become a foundation of all aspects of our
logic development flow, allowing us to become a world-wide
HPEC FPGA/ASIC leader for our clients, with increasingly
shorter schedules.

Figure 1 shows a typical design flow for the implementation of
an algorithm, starting with the specification or an actual
implementation of the algorithm in floating point
representation. If the HDL implementation is meant for fixed
point representation, the next step is to create an equivalent
model with fixed point. That model will then be part of the
verification environment, but also needs to be refined to a
certain extent so that the logic developers can start their job.

Algorithm
specification LA T Create verification
fixed point

wironment

r
in floating point
representation

representation

Logic
development

!

Verification
process

A

Figure 1: Development Flow

What can be seen from this flow chart is that the model is a
critical point in the development process. Reducing its

development time will reduce the overall development time. The
more accurate the model, the less risk there will be in the logic
implementation. To accomplish this, we use Python to model
the algorithm and other Python-based helpers to improve
efficiency in the rest of the development steps.

The remaining document will be divided in chapters with a short
introduction to Python, modeling bit true logic, building logic,
and finally using Python to drive the verification process.

Brief Introduction to Python

Python is an open-source design language, encompassing a
lightweight scripting style liked by hardware engineers, but with
extensions that include powerful array and scientific processing
via NumPy / SciPy. Its concise, explicit format is easy to code,
read, and maintain, resulting in excellent software quality.
Object-oriented programming aspects promote powerful class
creation and code reuse. Python is available for all major
computer platforms and operating systems.

Based upon our experience, an engineer of any discipline can do
more in less time with Python than with any other language.
That is a bold statement, one that we believe is supported by our
success implementing very complex HPEC algorithms.

HPEC Algorithm Model

Python shines for HPEC algorithm modeling, with math
capabilities on par with MATLAB and all the features of a
modern general purpose object oriented scripting language at
your fingertips.

Algorithm Development with Python

To effectively implement an HPEC algorithm in logic, it first
must be modeled in a format that permits closer comparison to
HDL building blocks, yet retains the high-level algorithmic
structure. We will typically start with development of a Python
model using regular floating point numbers.

Python has a number of useful built-in features for algorithm
development:

» full array support

* linear algebra

* built in complex number support

+ array plotting

+ canned FFT/IFFT and other math functions

« easy integration of control and math functions

+ ease of model re-use via modules

* object oriented programming for the non-programmer

Fixed vs. Float

Most HPEC algorithms will require some or all fixed point math
conversion to reduce size and power in an ASIC or FPGA
implementation to make the design resulting product viable.

Using fixed point data (enabled for example by DeFixedInt
class, available via download at www.DillonEng.com), trade
offs between numeric performance and fixed point bit widths
are done quickly and early in the development process. Bit
accurate results are possible at this stage of the development,
before a single line of HDL has been written.

With minimal changes to the floating point model, a fixed point
bit accurate model is created. In most cases, the algorithm
portion is common between fixed and floating point, with the
only different the array types passed and returned.

Fixed Point Model

Once the fixed point model is functional, a final pass can be
taken to test different bit widths and rounding schemes at
various places in the algorithm. Again this is done before a
single line of HDL is written and the resulting model will
exactly predict the HDL representation that is eventually
implemented in logic.

Building Logic with Python
We have also used Python to enable efficient logic generation,
test-benching, and areas where scripting increases productivity.

ParaCore

Dillon Engineering's IP development suite is completely written
in Python. More information on this tool is available on our
website (www.DillonEng.com).

MyHDL

MyHDL is a Hardware Description Language using Python to
describe the logic. Logic can be designed and verified in
Python. MyHDL also has automatic conversion to Verilog or
VHDL.

Scripting

There are always many repetitious tasks in any logic build flow:
+ logic generation
» synthesis
* place and route

All of these tasks can be simply automated using Python scripts.

Automation ensures proper builds and alleviates wasted effort of
troubleshooting mistakes in the build process.

Of course other scripting languages exist, but writing these
scripts in Python keeps us from having to master other scripting
languages, increasing our productivity.

A good example of a time saving Python script is gen_ise_sh.py
(available at www.DillonEng.com). With a few simple
parameters, it will build all structures needed to synthesize and
place/route a design with Xilinx ISE.

Verification with Python

Figure 2 shows a typical verification setup for an algebraic logic
implementation. A test data generator generates some stimulus
data that are fed through the model to get the expected data out.
The generated data are also fed through the HDL test bench into
the device under test. In the test bench there is a checker that
uses output from the device under test and compares it with the
expected output from the model.

Device Under Test

Figure 2: Verification

Verifying an algorithm implementation requires stimulating the
logic with data that is generated by math functions. Here Python
comes in handy again with its built in math module, allowing
signal generation with random or trigonometric nature. Another
benefit of building the model in Python is now we can feed the
data right through it without the need for file I/O.

The remaining question is how to get the generated data to the
test bench, as here usually a commercial simulator is used,
supporting only HDL. Our approach is to use MyHDL, a Python
module that allows Python/Verilog co-simulation through the
Verilog PLI. We build the test bench in Python, and in
connection with another Python base module, we can create
assertion based test cases. This allows us to feed data through a
Verilog device under test right from our Python code. The
output from the logic is verified with the output from the model
and the assertion will throw an exception and cancel the
simulation if there is a data mismatch.

Conclusion

As demonstrated by the efficiency at which Dillon Engineering
implements HPEC algorithms in ASICs and FPGAs, Python can
be used in many ways to improve productivity and reliability of
the logic design flow. The Python language scales nicely from
scripting up to complex algorithm development, allowing
engineers the opportunity to master only one language to greatly
increase their everyday productivity.

Reference
[1] http://www.python.org — Python web page

[2] http://www.scipy.org — SciPy web page

[3] http://www.numpy.org — NumPy web page

[4] http://myhdl.jandecaluwe.com — MyHDL web page

[5] http://matplotlib.sourceforge.net — matplotlib web page
[6] http://www.DillonEng.com — Dillon Engineer web page

http://www.python.org/
http://www.DillonEng.com/
http://matplotlib.sourceforge.net/
http://myhdl.jandecaluwe.com/
http://www.numpy.org/
http://www.scipy.org/

	Introduction
	Brief Introduction to Python

	HPEC Algorithm Model
	Algorithm Development with Python
	Fixed vs. Float
	Fixed Point Model

	Building Logic with Python
	ParaCore
	MyHDL
	Scripting

	Verification with Python
	Conclusion
	Reference

