
Dillon Engineering, Inc.
3925 West 50th Street, Suite 202, Edina, MN  55424

Tel.: 952-836-2413 Fax: 952-927-6514
www.dilloneng.com

Floating Point Library IP Core

1 General Description
• ParaCore ArchitectTM IP Core
• Designed for IEEE 754 single and double precision math
• Designed for custom precision, any exponent and mantissa width
• Pipeline stages configurable via ParaCore parameters
• Full IEEE 754 Special Case tracking
• Parametric IP core for maximum flexibility
• Available in generic HDL or targeted EDIF formats
• Full test bench supplied
• Greater than 200MHz operation in Xilinx Virtex II Pro
• Accepts input data each clock cycle (pipelined version)

The Dillon Engineering Floating Point Library IP Core (FPLIC) is a set of modules 
designed to perform all floating point math functions. The HDL representation of 
the FPLIC functions is generated with ParaCore Architect so it can be targeted to 
any device.

The floating point representation in the DE Floating point unit follows the IEEE 
754 standards for both single and double precision. The floating point modules can 
be pipelined (depth customized) or can be left non-pipelined depending on the re­
quirement.

FPLIC is designed to address the design challenges of digital signal processing in 
FPGA's today. It is the only floating point IP library that can be tailored made to 
meet exact needs of your application.

By optimizing the mantissa and exponents lengths for the target technology and 
application, tremendous gains in dynamic range and precision can be attained ver­
sus fixed point results with a minimal impact on device size and cost.
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2 IEEE 754 Description
IEEE Standard 754 floating point is the most common representation today for real 
numbers on computers, including Intel-based PC's, Macintoshes, and most Unix 
platforms. 

2.1 Storage Layout

IEEE floating point numbers have three basic components: the sign, the exponent, 
and the mantissa. The exponent base (2) is implicit and need not be stored. 

The following figure shows the layout for single (32-bit), double (64-bit) precision 
floating-point, and a custom precision example. The number of bits for each field 
are shown (bit ranges are in square brackets).

The custom size is shown as an example, any custom size is possible.

Floating Point Number Layout

Sign Exponent Mantissa Bias

Single Precision 1 [31] 8 [30-23] 23 [22-00] 127

Double Precision 1 [63] 11 [62-52] 52 [51-00] 1023

Custom(e_width=6,m_w
idth=16) 1 [22] 6 [21-16] 16 [15-0] 31

2.1.1 The Sign Bit

Zero is a positive number; one is a negative number. Flipping the value of this bit 
flips the sign of the number. 

2.1.2 The Exponent

The exponent field needs to represent both positive and negative exponents. To do 
this, a bias is added to the actual exponent in order to get the stored exponent. For 
IEEE 754 single-precision floats, this value is 127. Thus, an exponent of zero 
means that 127 is stored in the exponent field. A stored value of 200 indicates an 
exponent of (200-127), or 73. For reasons discussed later, exponents of -127 (all 
zeros) and +128 (all ones) are reserved for special numbers. 

For double precision, the exponent field is 11 bits, and has a bias of 1023. 

For custom precision, the bias is (2**e_width)/2 – 1.

2.1.3 The Mantissa

The mantissa represents the precision bits of the number. 
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Floating-point numbers are stored in normalized form. This puts the radix point af­
ter the first non-zero digit. 

An optimization utilized by IEEE 754 is to discard the leading 1 and assume that it 
exists, saving 1 bit of storage. Thus, the mantissa has effectively 24 bits of resolu­
tion in single precision while only 23 bits are stored. 

To summarize: 

• The sign bit is 0 for positive, 1 for negative. 
• The exponent's base is two. 
• The exponent field contains 127 plus the true exponent for single-precision, or 

1023 plus the true exponent for double precision. 
• The first bit of the mantissa is assumed to be 1, and is not stored explicitly. 

2.2 Ranges of Floating-Point Numbers

The range of positive numbers is defined by the following table:

Range Decimal

Single Precision 2-126 to (2-2-23)x2127 ~10-37.93 to 
~1038.53

Double Precision 2-1022 to (2-2-52)x21023 ~10-307.65 to 
~10308.25

Custom (e_width=6, 
m_width=16) 2-30 to (2-2-16)x231 ~10-9.03 to ~109.63

Since the sign of floating point numbers is given by a special leading bit, the range 
for negative numbers is given by the negation of the above values. 

There are five distinct numerical ranges that floating-point numbers are not able 
to represent (cases given relate to single precision): 

1. Negative numbers less than -(2-2-23) x 2127 (negative overflow) 
2. Negative numbers greater than -2-126 (negative underflow) 
3. Zero 
4. Positive numbers less than 2-126 (positive underflow) 
5. Positive numbers greater than (2-2-23) x 2127 (positive overflow) 

Overflow means that values have grown too large for the representation, much in 
the same way that you can overflow integers. Underflow is a less serious problem 
because is just denotes a loss of precision, which is guaranteed to be closely ap­
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proximated by zero. 

Here's a table of the effective range (excluding infinite values) of IEEE floating-
point numbers: 

Binary Decimal

Single ± (2-2-23)x2127 ~ ± 1038.53

Double ± (2-2-52)x21023 ~ ± 
10308.25

Custom (e_width=6, 
m_width=16) ± (2-2-16)x231 ~ ± 109.63

Note that the extreme values occur (regardless of sign) when the exponent is at 
the maximum value for finite numbers (2127 for single-precision, 21023 for double), 
and the mantissa is filled with ones (including the normalizing 1 bit). 

2.3 Special Cases

IEEE 754 reserves exponent field values of all zeros and all ones to denote special 
cases in the floating-point scheme. 

2.3.1 Zero

Zero is a special value denoted with an exponent field of 0 and a mantissa of 0. 
Note that -0 and +0 are distinct values, though they both compare as equal. 

2.3.2 Infinity

The values +infinity and -infinity are denoted with an exponent of all ones and a 
mantissa of all zeros. The sign bit distinguishes between negative infinity and posi­
tive infinity. Being able to denote infinity as a specific value is useful because it al­
lows operations to continue past overflow situations.

2.3.3 Indeterminate

The value indeterminate is represented by an exponent of all ones, a mantissa with 
a leading one followed by all zeros, and a sign bit of one. This value is used to rep­
resent results that are indeterminate, such as (infinity - infinity), or (0 x infinity). 

2.3.4 Not A Number

Finally, the value NaN (Not a Number) is used to represent a value that is an error 
of some form. This is is represented with an exponent field of all ones, a zero sign 

© 2005 Dillon Engineering, Inc. All rights reserved 4 of 18



Floating Point Library IP Core V2.5

bit, and a non zero mantissa.  This is a special value that might be used to denote a 
variable that doesn't yet hold a value. 

2.4 Special Operations

See the individual Fp module section for the special case logic for each of them. 
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3 Module Descriptions

3.1 Common Information
This section describes features that are common to all FPLIC modules.

3.1.1 Number Format
The basic number format for all FPLIC numbers is 
<sign><exponent><mantissa>. The sign bit is always the MSB, followed by the 
exponent, and the the mantissa. Width of exponent and mantissa are customized 
when module is generated.

3.1.2 Special Case Status
Standard special case tracking, with special cases encoded into all numbers as per 
IEEE 754, is supported by all modules that require the information.

All modules are built with special case status output ports (port_sp_out).  This sta­
tus port is defined by the following table:

SP[3:0] Bits Function Description

'0001' Zero Number is zero. Sign bit in number also applies.

'0010' INF Infinity. Sign bit in number also applies.

'0100' NAN Not a number.

'1000' IND Indeterminate.

If more than a single bit is set, then the number is set to indeterminate. 

IEEE 754 encodes this status information into the numbers as described in Section 
2. This is the default encoding for FPLIC numbers.

3.1.3 Performance
The number of pipeline stages is customized when the module is generated. There 
is a trade off between pipeline stages, clock frequency and logic usage. Increasing 
the pipeline stages will increase the clock frequency and logic usage. Decreasing 
the pipeline stages decreases the clock frequency and logic usage.

The first pipeline stage is always applied to the output, the second to the input, 
and the remainder are internal pipelines.
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3.1.4 SYNC_IN/SYNC_OUT
Each module has an I/O pair that can be used to track the data through the 
pipeline stages. SYNC_OUT tracks SYNC_IN delayed by the number of pipeline 
stages the module in configured  to have. If this feature is not used, then tie the 
SYNC_IN to 0. 

3.1.5 I/O Timing
In pipelined versions, all I/O is synchronous with port_clk with a input set on every 
block and an output on every clock following the pipeline delay.

Versions of each module are available that don't operate on continuous data, thus 
allowing logic reduction through logic sharing.

3.2 FpAdd/FpSub
In the FpAdd (or FpSub) operation the exponents of the two numbers are com­
pared with each other. The mantissa of the lesser of the exponents is shifted by 
the difference of the  exponents. Then the two mantissa's are added and the resul­
tant exponent is the greater of the two exponents. If a carry is produced, the expo­
nent of the result is shifted to account for the carry which is produced. The sign of 
the resultant number is the sign of the greater number.

3.2.1 FpAdd Ports

FpAdd/FpSub I/O Ports

Port Dir Function

port_a In
Operand A. Operation is A+B (FpAdd) and A-B 
(FpSub)

port_b In Operand B.

port_sync_in In
Input used to track the pipeline delay, does not 
effect math operation only used to create 
port_sync_out.

port_clk In
Clock input, only used on pipelined versions. All 
I/O are synchronous to the clock.

port_x Out Result.

port_sync_out Out
Delayed version of port_sync_in, delayed by 
pipeline depth.

port_sp_out Out Special case status for the result.
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3.2.2 Special Case Logic
Special case logic for the FpAdd/FpSub modules:

FpAdd/FpSub Special Case Logic

Precedence a b x Notes

1 NAN any NAN
“any” is any Fp 
number

1 any NAN NAN

2 IND any IND

2 any IND IND

3 ±INF any INF x.sign = a.sign

4 any ±INF INF x.sign = !b.sign

5 any any ZERO
Underflow, sign is 
0.

5 any any INF
Overflow, sign is 1 
for negative over­
flow, 0 for positive.

5 any any a±b Valid result

3.3 FpMult
In the FpMult operation, the exponents of the two numbers are added and the re­
sult of this becomes the resultant exponent. The mantissa's are multiplied together 
to produce the resultant mantissa. The exponent is adjusted appropriately after the 
mantissa is normalized.

3.3.1 FpMult Ports

FpMult I/O Ports

Port Dir Function

port_a In Operand A.

port_b In Operand B.

port_sync_in In
Input used to track the pipeline delay, does not 
effect math operation only used to create 
port_sync_out.
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FpMult I/O Ports

Port Dir Function

port_clk In
Clock input, only used on pipelined versions. 
All I/O are synchronous to the clock.

port_x Out Result.

port_sync_out Out
Delayed version of port_sync_in, delayed by 
pipeline depth.

port_sp_out Out Special case status for the result.

3.3.2 Special Case Logic
Special case logic for the FpMult modules:

FpMult Special Case Logic

Precedence a b x Notes

1 IND any IND “any” is any Fp number

1 any IND IND

2 NAN any NAN

2 any NAN NAN

3 ±INF any INF x.sign = a.sign ^ b.sign

4 any ±INF INF x.sign = a.sign ^ b.sign

5 any any ZERO Underflow, sign is 0.

5 any any INF
Overflow, 

x.sign = a.sign ^ b.sign

5 any any a*b Valid result

3.4 FpDiv
The FpDiv in FPLIC is done using the Goldschmidt's Algorithm. In this algorithm 
the result of the division is calculated by multiplying the numerator and denomina­
tor with a series of approximations for the reciprocal  of the denominator.  The 
mantissa of the numerator is divided by the mantissa of the denominator in this 
fashion. The resultant exponent is the difference between the exponents of the nu­
merator and the denominator.
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3.4.1 FpDiv Ports

FpDiv I/O Ports

Port Dir Function

port_a In Operand A. Operation is A/B.

port_b In Operand B.

port_sync_in In
Input used to track the pipeline delay, does not 
effect math operation only used to create 
port_sync_out.

port_clk In
Clock input, only used on pipelined versions. All 
I/O are synchronous to the clock.

port_x Out Result.

port_sync_out Out
Delayed version of port_sync_in, delayed by 
pipeline depth.

port_sp_out Out Special case status for the result.

3.4.2 Special Case Logic
Special case logic for the FpDiv modules:

FpDiv Special Case Logic

Precedence a b x Notes

1 NAN any NAN “any” is any Fp number

1 any NAN NAN

2 IND any IND

2 any IND IND

3 any ±ZERO INF x.sign = a.sign ^ b.sign

4 ±ZERO any ZERO x.sign = a.sign ^ b.sign

5 any ±INF ZERO x.sign = a.sign ^ b.sign

5 ±INF any INF x.sign = a.sign ^ b.sign

6 any any ZERO Underflow, sign is 0.

6 any any INF
Overflow, 

x.sign = a.sign ^ b.sign
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FpDiv Special Case Logic

6 any any a*b Valid result

3.5 Int2Fp
Int2Fp takes a integer and converts it to a floating point number. The width of the 
integer and size of floating point number are customized when the module is gen­
erated.

The preprocessing takes the two's complement of a negative number and keeps 
track of the sign bit. The positive integer is normalized so that the most significant 
1 becomes the hidden bit and the exponent is set to reflect the number of shifts.

3.5.1 Int2Fp Ports

In2Fp I/O Ports

Port Dir Function

port_a In Integer input.

port_sync_in In
Input used to track the pipeline delay, does not 
effect math operation only used to create 
port_sync_out.

port_clk In
Clock input, only used on pipelined versions. All 
I/O are synchronous to the clock.

port_x Out Floating point output.

port_sync_out Out
Delayed version of port_sync_in, delayed by 
pipeline depth.

3.5.2 Special Case Logic
No special cases for this module.

3.6 Fp2Int
Fp2Int takes as input a floating point number and convert it to an integer.

The conversion barrel shifts the mantissa using the exponent and integer width to 
set the shift amount, then post processes the shifted result to encode the special 
cases.
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3.6.1 Fp2Int Ports

Fp2Int I/O Ports

Port Dir Function

port_a In Floating point input.

port_sync_in In
Input used to track the pipeline delay, does not 
effect math operation only used to create 
port_sync_out.

port_sp_a In Special case status for operand A. 

port_clk In
Clock input, only used on pipelined versions. All 
I/O are synchronous to the clock.

port_x Out Integer output.

port_sync_out Out
Delayed version of port_sync_in, delayed by 
pipeline depth.

port_oflow Out Indicates Fp number was too big for integer.

3.6.2 Special Case Logic
No special cases for this module.

3.7 FpSqrt
The FpSqrt (square root) in FPLIC is done using the restoring shift/subtract algo­
rithm. In this algorithm the result of the square root operation is calculated by 
multiplying the series of approximations for the root of reciprocal of the number.

3.7.1 FpSqrt Ports

FpSqrt I/O Ports

Port Dir Function

port_a In Operand A, radicand.

port_sync_in In
Input used to track the pipeline delay, does not 
effect math operation only used to create 
port_sync_out.

port_clk In
Clock input, only used on pipelined versions. All 
I/O are synchronous to the clock.

port_x Out Result square root.
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FpSqrt I/O Ports

Port Dir Function

port_sync_out Out
Delayed version of port_sync_in, delayed by 
pipeline depth.

port_sp_out Out Special case status for the result.

3.7.2 Special Case Logic
Special case logic for the FpSqrt modules:

FpSqrt Special Case Logic

Precedence a x Notes

1 NAN NAN

2 IND IND

3 -any IND Negative input produces IND

4 INF IND

5 any a Valid result

3.8 FpRcp
The FpRcp in FPLIC is done using the Goldschmidt's Algorithm. In this algorithm 
the result of the division is calculated by multiplying the numerator and denomina­
tor with a series of approximations for the reciprocal  of the denominator.  The 
mantissa of the numerator is divided by the mantissa of the denominator in this 
fashion. The resultant exponent is the difference between the exponents of the nu­
merator and the denominator.

3.8.1 FpRcp Ports
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FpRcp I/O Ports

Port Dir Function

port_a In Operand A.

port_sync_in In
Input used to track the pipeline delay, does not 
effect math operation only used to create 
port_sync_out.

port_clk In
Clock input, only used on pipelined versions. 
All I/O are synchronous to the clock.

port_x Out Result.

port_sync_out Out
Delayed version of port_sync_in, delayed by 
pipeline depth.

port_sp_out Out Special case status for the result.

3.8.2 Special Case Logic
Special case logic for the FpRcp modules:

FpRcp Special Case Logic

Precedence a x Notes

1 NAN NAN “any” is any Fp number

2 IND IND

3 ±INF ZERO x.sign = a.sign ^ b.sign

4 ±ZERO INF x.sign = a.sign ^ b.sign

5 any 1/ a Valud result

3.9 FpSplit
FpSplit is used to split a Fp number into the sign, exponent and mantissa.

3.9.1 FpSplit Ports
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FpRcp I/O Ports

Port Dir Function

port_fp In Fp number to be split.

port_sign Out Sign of Fp number.

port_exp Out Exponent of Fp number.

port_man Out Mantissa of Fp number.

3.9.2 Special Case Logic
No special cases for this module.

3.10 FpCat
The FpCat module is used to construct a Fp vector from the sign, exponent and 
mantissa.

3.10.1 FpCat Ports

FpCat I/O Ports

Port Dir Function

port_sign In Sign input

port_exp In Expoent

port_man In mantissa

port_fp Out
Floating point number concatinated from the 
sign, exp, and man.

3.10.2 Special Case Logic
No special cases for this module.

3.11 FpCmp
The FpCmp is used to compare two Fp numbers, eq (equal), gt (greater than), lt 
(less than) and er (error) are produced.

3.11.1 FpCmp Ports
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FpCmp I/O Ports

Port Dir Function

port_a In Operand A.

port_b In Operand B.

port_clk In clock

port_er Out Error, a or b IND or NAN

port_eq Out A == B is True

port_gt Out A > B is True

port_lt Out A < B is True

3.11.2 Special Case Logic
No special cases for this module.
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4 ParaCore Options
The DE FPLIC is very flexible since it was designed using ParaCore Architect. All 
configuration parameters are used to customize the module when it is generated.

The parameters for all Math operations are similar and defined by the following ta­
ble.

Math Operation Parameters

Parameter Type Description

exp_width integer
Sets the exponent width for a floating point I/O to 
the module.

man_width integer
Sets the mantissa width for a floating point I/O to 
the module.

width integer
Set the integer width for any integer I/O of the 
module.

stages integer

Defines the number of pipeline stages in the mod­
ule. Stage == 0 is valid and results in a completely 
combinatorial module (clk is connected but not 
used). Stages > 15 is valid but will not increase the 
clock frequency of the module.

All modules are built by and delivered to the clients specifications. 

Bit accurate C models are available for all modules.
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5 FPGA Area Usage
The following section give a few samples of area usage in a couple of FPGA tech­
nologies.

5.1 Virtex II area Usage

The following is the area used by the FPLIC in a Virtex II FPGA. Units are in 
slices with mult18x18s in parenthesis if used.

Virtex II Area Usage (Slice)

Function
Single

Precision

Double

Precision
e_width=6,m_width=16

FpAdd/FpSub 525 3100 503

FpMult 141 (4) 458 (9) 79 (1)

FpDiv 1200 (28) 4600 (112) 465

5.2 Altera Area Usage

The following is the area used by the FPLIC in Altera Apex FPGAs.

Apex Usage (Slice)

Function
Single

Precision

Double

Precision
e_width=6,m_width=16

FpAdd/FpSub 1673 6742 1022

FpMult 1360 6009 737

FpDiv 12397 55178 7410
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