

Implementing Efficient Split-Radix FFTs in FPGAs

- Radix-2 and Radix-4 FFTs are common
- Many applications benefit from other lengths
- OFDM Transceiver, Digital Video Broadcasts, and software defined radios often require FFTs that aren't a radix-2 or radix-4 length
- Split-radix simplifies the logic for these applications
- Common Split-radix algorithms are Cooley-Tukey, Kolbe-Parks, and Good-Thomas

Split-Radix FFTs

- Split-radix refers to combinations of two (or more)
 FFT engines
- Split-radix FFTs have a similar structure to 2D FFTs
- Split-radix FFTs provide bin spacing that produce better results for many applications
- Two split-radix approaches employed by DE:
 - Serial (traditional) lower performance, higher memory requirements by using serial versions of both FFTs
 - Parallel higher performance by placing larger radix FFTs in parallel and using a parallel version of the smaller radix FFT
- Parallel version mainly used when combining a larger FFT with a 3 or 5 point FFT, since it is feasible to use 3 or 5 large FFTs in a single device

Traditional Serial Split-Radix Approach

*Continuous data FFTs require enough memory to store two full copies of the data for each re-order stage

Serial 768-Point Split-Radix FFT

Serial 768-Point Split-Radix FFT (cont.)

- Single engine of each radix (256-point FFT followed by 3-point FFT)
- Lower device utilization, with performance suitable for most applications
- High memory requirements for data re-ordering
- Speeds up to continuous data, slower data rates require less logic
- Same structure (with external memory) used for ultra-long FFTs

Parallel 768-Point Split-Radix FFT

Parallel 768-Point Split-Radix FFT Data Flow

Parallel 768-Point Split-Radix FFT (cont.)

- Combines 256-point FFT with 3-point FFT
 - 3 x 256-point FFT executions
 - 256 x 3-point FFT executions
- Eliminates the need for intermediate memory
- Higher resource (logic) usage as more computations are performed in parallel
- Very high performance perform a new 768-point FFT every 256 clock cycles (1.7uS @ 150 MHz)

Parallel 768-Point Split-Radix FFT (cont.)

	Vertex II Performance @ 150 MHz (18-bit Complex I/O)							
Туре	Number of Butterflies	Latency (uS)	FFT Rate (uS)	Sizes	Block RAM	Multipliers	Power (mW)	Cost (\$)
Serial	1	20.67	20.42	3,562	12	4	756	290
Serial	4	15.67	5.12	5,224	18	16	969	500
Parallel	3	6.96	6.83	4,180	24	12	974	350
Parallel	6	3.54	3.41	6,260	45	24	1,331	700
Parallel	12	1.84	1.70	11,123	75	48	1,840	1,400

- Latency: Time from last point in to first out
- FFT rate: Rate to input FFT data sets
- Sizes : In Virtex II slices
- Power: Estimate via Xilinx XPower
- Cost: Based on single piece XC243000-6 from Partminer.com

Other Dillon Engineering Resources

- ParaCore Architect (parameterized core builder)
- DSP Algorithms
 - Ultra-long FFTs (2k x 2k = 4M points)
 - 2D FFTs for image processing
 - Fixed or floating-point FFTs
 - Floating point math library
- System level DSP
 - OFDM Transceivers
 - Radar Processing on single FPGA
 - Image Compression/Processing
- FPGA-based DSP development platforms
- Hardware/Software SOC
 - High speed Ethernet Appliances
 - Linux Based SOC in FPGA
 - MicroBlaze application